Standard ML Code

ANOQ of the Sun, Hardcore Processing *
May 19, 2023

1 Introduction

This page gives you access to lots of reusable pieces of Standard ML code. It is
all distributed under GNU Lesser General Public License (LGPL) - except for one
illustrative example which is under GPL. The code is released as small separate
projects, but in a way that should make it easy to install several projects and
use them together.

2 This document in other formats

This document is a available in the following different file formats:

e http://www.HardcoreProcessing.com/pro/smlcode/index.html
e http://www.HardcoreProcessing.com/pro/smlcode/index.pdf

e http://www.HardcoreProcessing.com/pro/smlcode/index.ps

*©2000 ANOQ of the Sun (alias Johnny Andersen)

3 Available Projects

The following projects are available for download by clicking on the links:

CompatibilityLayer project - gives various ML compilers a more uni-
form set of Standard ML Basis library modules, such as Word32, IntArray
etc.

ErrorHandling project - an attempt to provide a general framework for
handling errors in Standard ML. This is required by some of the other
projects.

Arith project - some standard arithmetic signatures used many places
in the projects below.

Geometry project (requires the Arith project) - some basic geometry
stuff like 3D point, 3D vector, 2D points with either real or integer coor-
dinates, 2D rectangle etc.

Matrix project (requires Arith and ErrorHandling projects) - 4x4 ma-
trices, mostly for making coordinate transformations on 3D points.

Collections project - implements a ternary search tree structure.

NumericRep project (requires ErrorHandling project) - implements con-
version of binary IEEE Floats to ML real values.

FunctionallO project - implements functional input streams, both text
based and binary.

ParsingToolkit project (requires CompatibilityLayer and FunctionallO
projects) - binary and text based combinator parser utilities using func-
tional input streams.

test.rib.gz file - a packed 4MB RenderMan RIB file for testing the
ParsingToolkit and FunctionallO projects on some more real data.

If you want to use several projects together at the same time, just unpack
them all in the same directory. An appropriate directory structure is used for

this.

Most, if not all, of the projects should work with SML/NJ, MLton and

MLKit. It has also been used with MLWorks once upon a time, but that is not
supported any more. The projects will be documented in the following.

4 CompatibilityLayer

This project gives a compatibility layer between various Standard ML compil-
ers. Including this module in your own project will give a more uniform set
of Standard ML Basis library modules. In particular it should give you the
following modules:

e IEEEReal

e LargeReal

o Word32

e IntVector

e StringVector
e BoolVector
e IntArray

e StringArray
e BoolArray

It is implemented for the following ML compilers:

o MLKit
e SML/NJ
e MLWorks

However there is no guarantee that I have had a use for all the listed modules
for all the supported compilers - but then at least you should be able to add
those modules quite easily by looking at the source code.

5 ErrorHandling

This project is an attempt to provide a general framework for handling errors
in Standard ML. It provides both a simple signature for reporting errors and a
framework of general exceptions.

5.1 ERROR_REPORTER signature and ErrorStdOut struc-

ture

The FRROR_REPORTER signature looks like the following:

signature ERROR_REPORTER =
sig
val bug : string -> unit
val error : string -> unit
val warning : string -> unit
end

There is a structure called ErrorStdOut which implements this signature.
In this structure the errors will just be shown as error messages on the stan-
dard output device. Further more the functions bug end error will also raise
exceptions after the errormessage has been shown.

5.2 Excn structure

This structure attempts to be a general exception framework. The framework
is probably best suited for a user interface toolkit where one can implement a
general system for displaying errors as dialog boxes - but I'm not really sure if
this is a good framework or not. The signature looks like this:

signature EXCN
sig
datatype t
Generic
| Bug
| NotImplemented

(* The excpetion data should be treated as being opaque
- i.e.: DO NOT TOUCH! *)
exception EGeneric of (t * string * string) list

val eRaise : (t * string * string) -> ’a

val eRaiseBug : string -> ’a

val eRaiseGeneric : string * string -> ’a

val eRaiseNotImplemented : string -> ’a

val reRaise : exn -> (t * string * string) -> ’a

val output : (string -> unit) -> exn -> unit

val checkedExecOutF : (string -> unit) ->

(Ja ->)b) -> Ja -> Jb ->)b
val checkedExec : (’a -> ’b) -> ’a -> ’b -> ’b
end

This framework classifies exceptions as either generic exceptions which could
be anything, bugs which is errors that should never occur and an exception for
when some part of a program is not implemented. It is intended that one does
not raise exceptions other than through the supplied functions. All exceptions
have 3 data elements:

e An exception class - either Generic, Bug or NotImplemented.
e Some descriptive category as a string.

e Some error or exception message as a string.

The EGeneric exception (that you're not supposed to raise yourself...) con-
tains a list of exceptions. This is intended to be a stack of raised exceptions
when the exception reaches the point where it will be shown to the user. The
stack will be built when using the reRaise function which can re-raise an excep-
tion caught at a lower level to give a higher level exception. The function eRaise
is the general function for raising an exception. eRaiseBug, eRaiseGeneric and
eRaiseNotImplemented are the specific versions. The functions eRaiseBug and
eRaiseNotImplemented will give empty descriptive categories.

The function checkedEzec is for automatically handling exceptions in this
framework. It takes as arguments a function to be executed - of type ’a -; b,
the argument to be supplied to the function and a default value to return in
case an exception is raised. This function will display errors on the standard
output device. The function checkedExecOutF is a more general version of this
function. It takes as the first argument a function for displaying errors. So
checkedEzec is equivalent to checkedFExecOutF print.

The function called output takes a function for displaying errors and an ex-
ception raised with this framework. The function will then show an appropriate
error message. If the given exception is not the EGeneric exception used in this
framework, then an error will be displayed indicating this.

6 Arith

The Arith project is a set of very useful arithmetic signatures. It is inspired
by some of the ARITH signatures found in Larry Paulson’s book ML for the
Working Programmer. The following is some documentation for the signatures:

6.1 ADD_ARITH

The ADD_ARITH signature is a basic set of functions for adding, subtracting
negating and comparing values of some given type ¢. The signature is listed
here:

signature ADD_ARITH = (x Addition arithmetic *)
sig

type t

(* When zeroValue is added to t, the result is t *)

val zeroValue :t
val add c(txt) >t
val subtract c(txt) >t

(* Inverse number for add *)
val negate tt >t

(* Comparison *)
val equal : (t * t) -> bool
end

The value called zero Value is called zero Value to be consistent with the value
called unitValue in the MULT_ARITH signature.

6.2 SCALE_ARITH

SCALE_ARITH provides functions for scaling values of some given type ¢ with
scalar values. The signature is listed here:

signature SCALE_ARITH = (* Scaling arithmetic *)
sig
type t
type scalar

val scale : (t * scalar) —> t
val inverseScale : (t * scalar) -> t
end

The function scale will scale a value of type ¢ with a value of type scalar.
inverseScale will scale a value of type ¢t by the multiplicative inverse of a value
of type scalar. For instance if the type ¢ is a coordinate vector of real valued
coordinates and scalar have type real, the function scale would scale a vector
by a real number and the function inverseScale would scale a vector by the
reciprocal value of a real number - i.e. vector * 1 / scalar. You should look at

the signature MULT_ARITH to see why the functions are not called multiply
and divide.

6.3 MULT_ARITH

MULT_ARITH gives a signature for multiplying, dividing and inverting values
of some given type ¢. The signature is listed here:

signature MULT_ARITH = (* Multiplication arithmetic *)
sig
type t
(* It’s called unitValue and not unit to avoid

conflicts with the SML type unit...*)
(* When unitValue is multiplied by t, the result is t *)

val unitValue :t
val multiply s (txt) >t
val divide c(txt) >t

(* Inverse number for multiply *)
val invert Tt >t
end

As can be seen from the comment in the code, it is not possible to call a
value unit in Standard ML, because this is a builtin type.

6.4 ADD_SCALE_ARITH

This signature is the union of the ADD_ARITH and the SCALE_ARITH sig-
natures. So it simply contains everthing that these two signatures contain.

6.5 ADD_MULT_ARITH

This signature is the union of the ADD_ARITH and the MULT_ARITH signa-
tures. So it simply contains everthing that these two signatures contain.

6.6 ADD_SCALE MULT_ARITH

This signature is the union of the ADD_ARITH, SCALE_ARITH and the MULT_ARITH
signatures. So it simply contains everthing that these 3 signatures contain.

7

Geometry

The geometry project contains some basic geometry stuff. In particular it con-
tains the following modules:

Point3D - 3D Point structure with real valued coordinates.

Vector3D - 3D Vector structure with real valued coordinates.

Point2D - 2D Point structure with real valued coordinates.

IPoint2D - 2D Point structure with integer valued coordinates.

IRect2D - 2D Rectangle structure with integer valued coordinates.
ILine2D - 2D lines structure with integer coordinates (very incomplete).

1Size2D - 2D sizes structure with integer coordinates (very incomplete).

Each structure will be documented separately in the following.

7.1
The

Point3D

Point3D structure implements 3D points with real valued coordinates. It

implements the ADD_SCALE_ARITH signature and 3 additional functions for
projecting points to 2D along the principal axes. The signature looks like this:

signature POINT3D = (* 3D Point with addition arithmetics *)
sig

type coord (* This has type real in the Point3D structure *)
include ADD_SCALE_ARITH
where type t = {x : coord, y : coord, z : coord}
and type scalar = real
type point2d = {x : coord, y : coord}

val xyCoordsAs2D : t -> point2d
val xzCoordsAs2D : t -> point2d
val yzCoordsAs2D : t -> point2d

end

7.2
The

Vector3D

Vector3D structure implements 3D vectors with real valued coordinates. It

implements the ADD_SCALE_ARITH signature and some additional functions.

The

signature looks like this:

signature VECTOR3D = (* 3D Vector with addition arithmetics *)
sig

type coord (* This has type real in the Vector3D structure *)
include ADD_SCALE_ARITH
where type t = {x : coord, y : coord, z : coord}
and type scalar = real
type vertex = t

val fromVertices : (vertex * vertex) -> t

val dotProduct : (t * t) -> real
val crossProduct : (t * t) -> t
val length :t -> real
val normalize Tt >t

end

The function from Vertices creates a vector between 2 points in space, with
the first point being the start of the vector and the second point being the
end of the vector. dotProduct computes the dot product between 2 vectors and
crossProduct computes the crossproduct between 2 vectors. length returns the
length of a vector and normalize normalizes a given vector into a vector with
the same direction and length 1.

7.3 Point2D

The Point2D structure implements 2D points with real valued coordinates.
It implements the ADD_SCALE_ARITH signature and an additional function
called move. The signature looks like this:

signature POINT2D =
sig
type coord (* This has type real in the
Point2D structure *)
include ADD_SCALE_ARITH
where type t = {x : coord, y : coord}
and type scalar = real

(* This is really the same as add, but it
takes a pair of coords as the vector to move.
So it’s just for convenience. *)
val move : (t * (coord * coord)) -> t
end

7.4 IPoint2D

The Point2D structure implements 2D points with integer valued coordinates.
It implements the ADD_SCALE_ARITH signature, the move function from the
POINT2D signature and and 2 additional functions for converting to and from
points with real valued coordinats. The signature looks like this:

signature IPOINT2D =
sig
include POINT2D where type coord = int

(* For converting to and from real-valued points. *)
val toPoint2d : t -> Point2D.t
val fromPoint2d : Point2D.t -> t

end

7.5 IRect2D

The IRect2D structure implements 2D rectangles with integer valued coordi-
nates. The signature looks like this:

signature IRECT2D =
sig
(* Public types and values *)
type t = {x : int, y : int, w : int, h : int}

val zeroValue : t

(* Public functions *)

(* FIXME: Rename to hasNoArea? or isEmpty?
or isDegenerate? *)

val isZero : t -> bool

val equal : t * t -> bool

(* If the rectangle gets zero extent -
zeroValue is returned *)

val inset : t * int -> t

val move :t * (int * int) -> t

(* A point on the boudary of a rectangle is also
considered to be contained in the rectangle. *)
val containsPoint : t * IPoint2D.t -> bool

(* Returns zeroValue for empty intersections
i.e. intersections with zero or less
height or width. *)

val intersect ttxt >t
val union ttxt >t
end

The value zeroValue is a rectangle with (0, 0) as the corner vertex and width
and hight 0. The function isZero checks if a rectangle does not have any extent
or a negative extent (Notice: This function might be renamed in the future).
inset shrinks the rectangle from all sides by some integer value. move will move
the rectangle to another position. containsPoint returns true if the given point
is inside or on the boundary of the given rectangle. intersect and union creates
the intersection or the union, respectively, of two rectangles.

7.6 ILine2D

The structure ILine2D is very incomplete and only contains the a type for 2D
lines with integer coordinates. This type is:

type t = {x0 : int, yO : int, x1 : int, yl1 : int}

10

7.7 1ISize2D

The structure ISize2D is very incomplete and only contains the a type for 2D
sizes with integer coordinates. This type is:

type t = {w : int, h : int}

11

8 Matrix

This project implements 4x4 matrices. It is mostly intended for doing coordinate
transformations on 3D points. The structure implements the ADD_SCALE_MULT_ARITH
signature as well as some other stuff. The signature looks like this:

signature MATRIX_4X4 =
sig
include ADD_SCALE_MULT_ARITH
where type scalar = real
type tuples = Matrix4x4Type.t

val fromTuples : tuples -> t
val toTuples : t -> tuples
val determinant : t -> real
val transpose : t -> t

val adjoint : t -> ¢t

structure Const : MATRIX_4X4_COMMON
where type angle = real
structure Trans : MATRIX_4X4_TRANSFORMATION
where type t = ¢t

sharing type t = Const.t
end

It should be emphasized that matrix multiplication is not symmetric. So
the result of multiplying two matrices with the function multiply will in general
depend on which matrix is the left operand and which is the right operand.
The Matriz4z4 structure assumes the mathematical standard representation of
matrices - meaning that you will most likely want to multiply matrices on to
the left of another matrix. Please read the section below called About Matrices
for futher details on these issues.

The type tuples is a 4-tuple of 4-tuples of reals where the outer tuple is a
tuple of rows and each of the inner tuples is a row. The functions fromTuples and
toTuples converts to and from this representation. This is also the representation
used internally in the implementation - but that could easily change without
changing the signature.

There are also 2 nested structures. The structure Const is a collection of
functions for creating some handy 4x4 matrices. Trans is for transforming 3D
points and 3D vectors. Finally there are also 3 functions which are particular
to matrices. These are determinant, transpose and adjoint which work as you
would expect.

8.1 MATRIX 4X4_ COMMON

The structure Const has the following signature:
signature MATRIX_4X4_COMMON =
sig
type t (* This is the type of a matrix in the

12

structure Const *)

type angle (x This is type real

Const

val rotateSinCosX :
val rotateSinCosY :
val rotateSinCosZ :
val rotateX : angle
val rotateY : angle
val rotateZ : angle

*)

real * real
real * real
real * real

-> t
->t
->t

in the structure

->t
-> t
-> t

(x FIXME: rotateXYZ not tested! *)
val rotateXYZ : angle * real * real * real -> t
val scaleXYZ : real * real * real -> t
* real -> t

val translateXYZ : real x*
val shearXY : real * real
val shearXZ : real * real
val shearYZ : real * real
val perspective : real ->
val parallel : t (x FIXME:
val swapLRCoordsys :

end

If you know about 3D coordinate transformations this should be almost self
explanatory. Otherwise you might want to read up on it anyway :) Notice that
angle is expected to be in radians. The functions rotateSinCosX, rotateSinCosY
and rotateSinCosZ can be used if you have the sine and cosine of a desired
rotation angle and they are more efficient than using rotateX, rotateY and
rotateZ.

t (%

real
-> t
-> t
-> t

t (x FIXME: Not tested!

Not tested! *)

FIXME: Not tested! *)

*)

The reason why this signature is called MATRIX_4X4-COMMON is that 1

sig

type t (x Matrix type *)

val transformPoint :

val transformVector

end

t > {x :

{x :

t > {x :
{x :

13

signature MATRIX_4X4_TRANSFORMATION =

real, y :
real, y :

real, y :
real, y :

8.2 MATRIX 4X4 TRANSFORMATION

The signature for transforming 3D points and 3D vectors looks like this:

real, z :
real, z :

real, z :
real, z :

have had plans for implementing a structure called Oper which has the same
signature - except that the type t would be Matrizjz4.t -; Matrixjz4.t. The
purpose of this would be to create optimized functions for multiplying a matrix
with each of the common transformation matrices listed in the signature.

real} ->
real}

real} ->
real}

These points and vectors must have the type z : real, y : real, z : real which
is also the type used in the Geometry project described above.

The functions will transform points and vectors by considering them as
columns multiplied on to the right of the matrix - or put another way by multi-
plying a matrix on to the left of the point. This conforms to the mathematical
standard way of transforming points.

8.3 About Matrices

First off it should be noted that some computer graphics textbooks use the
mathematical standard way of transforming points while other books use a
transposed notation for matrices.

Some books that follow the mathematical standard when describing coordi-
nate transformations are listed here:

o Computer Graphics: Principles and Practice by Foley, van Dam, Feiner
and Hughes.

e 3D Game Engine Design by David H. Eberly.
e Real-Time Rendering by Thomas Moller end Eric Haines.

o Warping and Morphing of Graphical Objects by Gomes, Darsa, Costa and
Velho.

Some books that use the transposed notation are listed here:

o Advanced Animation and Rendering Techniques by Mark Watt and Alan
Watt.

o Advanced RenderMan: Creating CGI for Motion Pictures by Larry Gritz
and Anthony A. Apodaca.

e Graphics Gems edited by Andrew S. Glassner.

You would typically transform a point by a series of matrices like this:
Ptransformed = (M5 * M4 x M3 * M2 % M1) * Poriginal

First you would mutiply the matrices to obtain a single matrix and then
transform your bzillion points by multiplying with the resulting matrix. In ML
you can multiply a list of matrices together with the following code:

val m = foldr Matrix4x4.multiply Matrix4x4.unitValue matrices
Or equivalently, since matrix multiplication is associative:
fun swap (a, b) = (b, a)

val m = foldl (Matrix4x4.multiply o swap)
Matrix4x4.unitValue matrices

14

However using foldr is probably slower and might use memory proportional
to the length of the list matrices.

In case you want to generate the inverse of a list of matrix transformations,
you could invert each matrix and multiply the matrices together in the opposite
order. This can be done with the following code:

val mInverse = foldl Matrix4x4.multiply
Matrix4x4.unitValue
(map myInvert matrices)

15

9 Collections

This project implements a ternary search tree structure which is used in the
Standard ML bindings for RenderMan - RI::ML. In my own CVS repository,
the Collections project also contains other structures, such as dictionary, set
implementations, hash table etc. However I'm still not content with the signa-
tures for those structures, so it is not released here yet. However you can find
some older versions of these structures as part of the AbstactUI: :ML project.
Actually T would like to implement some very general signatures usable for many
kinds of collection structures - even many of those found in the Standard ML
Basis library! But, alas - time is in short supply.
But, returning to the ternary tree structure, the signature looks like this:

signature TERNARY_TREE =
sig
type ’a t

val empty : ’a t
val lookup : ’a t -> string -> ’a option

(* insert overwrites any previous data. *)
val insert : ’a t -> string -> ’a -> ’a t
end

It’s like a functional dictionary structure with a string as the key value.
Lookups and inserts are all done in practical constant time... actually linear
time in the length of the key string, but never mind. It might even be more
efficient than using a hash table! empty is an empty search tree, the lookup
function will look up a string value in the search tree and insert will insert a
new value with a key string into the tree - possibly overwriting existing data for
that key. And, that’s it! :)

16

10 NumericRep

This project currently only implements conversion of binary single precision
IEEE floating point values into ML real values. The project has two struc-
tures IEEESingleFloat and IEEEDoubleFloat. However only IEEESingleFloat
is implemented. The signature for both structures looks like this:

signature IEEE_FLOAT =
sig
type binary (* This is Word32.word in IEEESingleFloat and
Word64.word in IEEEDoubleFloat *)

val toLargeReal : binary -> LargeReal.real
val fromLargeReal : LargeReal.real -> binary
end

Only the function toLargeReal is implemented in IEEESingleFloat. Con-
verting the other way seems more troublesome, and I have not had any need for
it. The IEEESingleFloat structure is used in my commercial application called
CeX3D Converter for reading binary float values in the LightWave 3D object
file format, so it is production proven :)

10.1 Proposal for the Standard ML Basis library

I believe it would be very natural if a few functions for converting to and from
binary IEEE float values were added to the REAL signature in the Standard
ML Basis library. This is mostly because that these modules already use the
IEEE binary representations internally.

It could be implemented by adding functions toBinary and fromBinary and
implementing single precision for Real32 and double precision for Real64. But
of course this might make the Real module inconsistent. Alternatively, all the
Real modules could have 4 functions toBinarySingle, toBinaryDouble, fromBi-
narySingle and fromBinaryDouble, but this is less orthogonal, so I'm not sure
what would be best.

17

11 FunctionallO

This project implements a way of reading binary and text files in a functional
way. It tries to match a subset of the the Text/O and BinIO modules of the
Standard ML Basis library as closely as possible. It contains the structures
FuncBinlO and FuncTextIO. The basic signature looks like this:

signature FUNCTIONAL_IO =
sig
include IO

type vector (* This is Word8Vector.vector in FuncBinIO
and CharVector.vector in FuncTextIO. *)
type elem (* This is Word8.word in FuncBinIO
and Char.char in FuncTextIO. *)
type instream
type outstream

val input : instream -> vector * instream
val inputl : instream -> (elem * instream) option
val inputN : (instream * int) -> vector * instream

(* Closes file for further input.
New end of file becomes the furthest
position in the file that has been read
internally. *)
val closeln : instream -> unit
end

However the FuncBinIO and FuncTeztIO structures also implement the
openln function as can be seen in this signature:

signature FUNC_BIN_IO =
sig
include FUNCTIONAL_IO

val openIn : string -> instream
end

The functions input and inputN will return vectors of length zero if no
more characters can be read from the stream. An important thing to notice is
that closeIn will only close the underlying file, meaning that all the functional
versions of the stream can continue to read as much data as has already been
read into memory from the file.

18

12 ParsingToolkit

This project implements combinator parsers as described in ML for the Working
Programmer by Larry Paulson. However this implementation uses the Function-
allO streams described above. The implementation is based on a combinator
parser implementation by Fritz Henglein.

The main structures of this project are TextIOParserCombinators and Bin-
I0ParserCombinators. The signature for these looks like this:

signature PARSER_COMBINATORS =
sig
type instream (* This is FuncTextIO.instream in
TextIOParserCombinators
and FuncBinIQO.instream in
BinIOParserCombinators *)
type vec (* This is string in TextIOParserCombinators
and Word8Vector.vector in
BinIOParserCombinators *)
type elem (* This is char in TextIOParserCombinators
and Word8.word in
BinIOParserCombinators *)

(* This is the type of a parser. A parser is a
function taking a functional instream as
argument. It returns a value that has been
created by the parser during parsing, and
a new functional instream with the stream
position updated to where the parser stopped
reading. *)

type ’a parser = instream -> (’a * instream)

(* SyntaxError is raised when a parser fails to parse. *)
exception SyntaxError of string * instream

(* Functions given to the >> combinator are expected
to raise ValidityError on invalid arguments. *)
exception ValidityError of string

(* The combinators *)

(* The purpose of this combinator is to try parsing
with 2 parser functions and return the result
of the first function that succeeds. *)

val || : (a parser) * (’a parser) -> (’a parser)

(* This combinator will execute 2 parsers in sequence
and return a pair of the results of the parsers. *)

val -- : (’a parser) * (’b parser) -> ((’a * ’b) parser)

(* This combinator executes 2 parsers in sequence and
ignores the result of the first parser. *)

19

val $-- : (’a parser) * (’b parser) -> (’b parser)

(* This combinator executes 2 parsers in sequence and
ignores the result of the second parser. *)
val --$: (’a parser) * (°b parser) -> (’a parser)

(* Execute a parser and run the result through a function. *)
val >> : (’a parser) * (’a -> ’b) -> (°b parser)

(* This combinator is for reading an verifying an expected
keyword. *)
val $$: vec -> (vec parser)

(* Some handy built-in parsers. *)

(* Doesn’t parse anything, just returns nil. *)
val empty : (’a list) parser

(* Given a predicate, returns a parser that will read an
element from the stream if the predicate is true. *)
val getIf : (elem -> bool) -> (elem parser)

(* Given a parser, returns a parser that will read a
list of values with the given parser. Parses as
many values as possible. *)

val repeat : (’a parser) -> ((’a list) parser)

(* Given a predicate, returns a parser that will
read a list of elements, until the predicate
is false. *)

val repeatIf : (elem -> bool) -> ((elem list) parser)

(* Given a number n and a parser, returns a parser
that parses a list of n values with the given
parser. *)

val repeatN : int -> (’a parser) -> (’a list parser)

(* Same as repeatIf, except that this will read at
least one value - or fail. *)
val repeatOnelIf : (elem -> bool) -> ((elem list) parser)

end

A parser (of type ’a parser) is a function which reads data from a given

input stream and returns a value created or read during parsing and the input
stream updated with a new stream position. If a parser fails to read what it is
supposed to read, it raises the exception SyntazError.

Parsers operate on input streams of the type instream, which is from the

text based or the binary FunctionallO modules, depending on whether is is the
binary parsers or the string based parsers. The data read from input streams
are vectors of elements, where each element has type elem and the vector of

20

elements has type vec.
Now we will go through all the combinators for constructing new parser
functions from existing parser functions:

e || The purpose of this combinator is to try parsing with 2 parser functions
and return the result of the first function that succeeds. So, when given
two parsers, it returns a new parser which does the following: First try the
first parser given, by starting at the position of the given input stream, if it
fails try the second parser at the position given input stream. Returns the
result of the parser that succeedes first and the corresponding updated
input stream. Notice that this is the only combinator which does any
backtracing during parsing, so it is the only combinator which requires
reading the input stream more than once - and thus slowing down parsing.

e —— This combinator will execute 2 parsers in sequence and return a pair
of the results of the parsers. So, when given two parsers, it returns a
new parser which does this: First execute first parser at the position of
the given input stream, then second parser on the resulting position of
the input stream. Return a tuple of the results of both parsers and the
updated input stream.

e $-—- This combinator executes 2 parsers in sequence and ignores the result
of the first parser.

e ——3 This combinator executes 2 parsers in sequence and ignores the result
of the second parser.

e >> Execute a parser and run the result through a function. The function
may raise the ValidityFError exception on invalid input.

e $$ This combinator is for reading an verifying an expected keyword. So,
when given a value of type vec, it returns a parser which does this: Try to
read from the given input stream. If the given vec value can be read from
the stream, return the given vec value and the input stream with the new
position.

Some handy parsers are also supplied in these modules. It should be more
or less clear what they do from the comments in the signature above. It should
be noted that if the repeat parsers are implemented naively, they will use huge
amounts of memory when reading a list of data values. However, the not-so-
naive implementation supplied here works very well in practice.

There is also a structure called TextIOParserCombEztra. It gives a few more
handy parser functions for use with text based parsing. Also, it can be see as a
quick and very dirty example of writing parser functions. The signature looks
like the following:

signature TEXT_IO_PARSER_COMB_EXTRA =
sig
type instream = TextIOParserCombinators.instream
type elem = TextIOParserCombinators.elem
type ’a parser = ’a TextIOParserCombinators.parser

21

val isWhitespaceChar : char -> bool
val isLetterChar : char -> bool
val isDigitChar : char -> bool

val whitespaceForce : elem list parser
val whitespace : elem list parser

val getReal : instream -> real * instream
val getRealWS : real parser
end

The functions whitespace and whitespaceForce are parsers that will read as
many whitespace characters as possible. whitespaceForce will read at least one
whitespace - or fail. The function getReal is a parser that tries to read a floating
point value, as they look in many programming languages, and return it as an
ML real value. getReallWWS will also read a floating point value as a real, but
will also read and skip any whitespaces that may be following the floating point
value.

12.1 An example of a more real parser

A small example is included for reading a small subset of a RenderMan RIB
file. There is no documentation for this, and it is included only for instructive
purposes of how to write a parser. This particular example is released under
GPL and not LGPL as the rest of the code. There is a 4MB RenderMan RIB
file called test.rib available for download (it is packed with gzip), so that you
can see that the parser combinators and the functional IO modules work well
in practice even with relatively big files.

22

