MLton Cross Compiler Bootstrap Overview

Anoq of the Sun, Hardcore Processing *

September 22, 2003

1 Introduction

This documents tries to give an overview of the bootstrapping process for turn-
ing MLton into a cross compiler.

2 Notation

The basic notation will be as the notation used in [?] and [?]. As a brief summary
of this notation the function [|-|]r will take the meaning of a program according
to the semantics of the language L. For example the meaning of running the
program source written in the language S with input inq,ins,...,in, is the
same as running an interpreter int for the language S written in the language L
with the program source and it’s input iny, ins,.. ., in, as inputs for int. This
is expressed with the following notation:

[|source|]s[ini,ins, ..., in,] = [|[int|]L[source,iny,ina, . .., in,]

Compiling the program source with a compiler comp written in the langauge
L is expressed as:

target = [|comp|]Lsource

If comp performs a correct translation of programs from the language S to
some target language T', the following should hold:

output = [|source||s[ing,ing, . .., iny] = [|[target|]r[ing,ins, ..., iny]

For simplicity we assume that there are no termination problems.

*(©1998-2001 Anoq of the Sun (alias Johnny Andersen)

3 Compilation of MLton

3.1 Abbreviations
e MLtonsyr : The Standard ML source code for MLton

o M LtonpinLinus : A compiled version of MLton for Linux (assumed to be
on x86)

e Linuz : The Linux platform (also considered a ”language”)

3.2 Native Linux Compilation of MLton

Compiling MLton with itself once is usually done as follows:

M LtonyinLinug = [|M LtonyinLinuz ||Linuz [M Ltonsarr, " linuz” , consts|

Where the input string ”linuz” can be considered a commandline argument
for the platform to compile to and consts is the constants file that MLton uses
duing compilation. Actually consts is usually generated by MLton - but we
pretend that it has been generated already - since one of the purposes of this
document is to find out how to generate the consts files for cross compilation.

3.3 Bootstrapping MLton into a Linux to Win32 Cross-
compiler

To turn the compiler into a cross compiler we would need to do the following
compilation step:

MLtonbinWin32C’Toss = [lMLtonbinLinum ”LGuw [MLtonSML; ”win32bootstrap”) conStsWin32Bootstrap]

Cross compiling applications with the resulting compiler is done as:

AppbinWinSQ = [|MLt0nb'inWin32C’7'oss |]LGuz [AppSML7 ”win32cross”, conStSWz'n3207'oss]

And we hope to run this application on Win32:

output = [|Apprinwins2||wins2[ini, ins, . . ., iny,)

The interesting parts are how M Ltonyinwin32Cross, APPrinwin32, CONStSWin32Bootstrap
and constswinszacross are generated. The way that constswinsapootstrap and
constswinsacross are generated can probably be controlled just by the flags
?wind2bootstrap” and "wind2cross”.

To get an overview of how M Ltonyinwins2cross is generated and how the
M Ltong 1, code should be modified to achieve that it is probably a good idea to
pretend that the M Ltongarr, code, the constswinz2Bootstrap file and the resuling
binary M Ltonpinwins2cross 1S divided into 2 disjoint parts:

e The part of the code that implements reading and writing compiled files
and other compiler output, input or other interfacing with the host envi-
ronment, (hostIO)

e The part of the code that generates code and basis library functions which
is to be executed (outgen)

The constants file for the outgen part will have to be split further into 2
parts:

e The constants that are used to implement the outgen algorithms in the
MLton code (impl)

e The constants that are used in the produced output (prod)

We will split the cross compiling equation into 2 equations, and to simplify
the notation just a wee bit and focus on the parts we need to solve we will rename
M LtonpinLinus t0 M, (MLton native), M Ltongnrr, to S, constswins2Bootstrap
to ¢ and "win32bootstrap” to 7b”:

MLtonbz'nWin32C’7'osshos”o = [|Mn |]LGuz [ShostIO; 7y , cbhastlo]

]

When we start to compile an application by running the entire M Ltony;nwins2cross
on Linux each of the compiled parts will do their work in a different way:

— ”RH?
MLtonbinWiniﬁ’ZC’rossuuigen = [|Mn|]Linuw[Soutgena b 7cbcutgenimpl7cbcutge'n.p,,..od

o M Ltonpinwin32Crossne.io : Must produce files etc. as it is done on Linux.
From this we can conclude that Sp,s¢r0 must be compiled for Linux and
that cwin32Bootstrapn...ro Should be Linux constants.

o MLtonyinwin32Crossourgen : Must generate code and basis library calls
for Win32. From this we can conclude that Souzgen must be compiled
for Linux and generate code for Win32. This means that the constants
Choutgen iy should be Linux constants and that ¢ , should be Win32
constants.

outgenpro

The file constswinzacross should be a constants file with only Win32 con-
stants.

References

[1] Nils Andersen, Fritz Henglein, Niel D. Jones, Notes for Dat2V-
Programminglanguages at DIKU, 1999.

[2] Carsten K. Gomard, Niel D. Jones, Peter Sestoft Partial Evaluation and
Automatic Program Generation, Prentice Hall 1993.

