
Version 0.8.0

Ánoq of the Sun, Hardcore Processing ∗

October 3, 2007

∗ c© 2003-2007 Ánoq of the Sun (alias Johnny Bock Andersen)

Quoted as: Ánoq of the Sun, Ánoq, o., Ánoq, o. t. S. or Ánoq, of the Sun. Not: Sun, Á.
Technically, Ánoq is the ”family name”, always written and pronounced first.
The given name is ”of” (in lower-case). Middle-names: ”the” and ”Sun”.

1

Contents

1 Introduction 3
1.1 Open Issues for Discussion (Temporary) 3

2 Project Goals 5
2.1 Problems Solved . 5
2.2 Practical Goals . 5
2.3 Additional Motivation . 5

3 Features of the Supplied Implementation 6
3.1 Not Implemented in the Supplied Implementation 6

4 The Collection Signatures 7
4.1 The Collection Signature . 7
4.2 The Imperative Collection Signature 8
4.3 The Mono Collection Signature 9
4.4 The Imperative Mono Collection Signature 10
4.5 Examples of Other Collection Data Structures 12

4.5.1 Lazy Implementors Writing New Collection Data Structures 12
4.6 Functions Altering Data Structure Dimensions 12

4.6.1 Functions Reducing Dimensions 12
4.6.2 The Functions insert and delete 13

5 Traversal Mode Additions for the Collection Signatures 14
5.1 The Collection Traversal Signature 14
5.2 The Imperative Collection Traversal Signature 14
5.3 The Mono Collection Traversal Signature 15
5.4 The Imperative Mono Collection Traversal Signature 15
5.5 Some Examples of Modules with Traversal Modes 16
5.6 A More Drastic Idea . 16

6 Number Looping Functions 17
6.1 Int Looping Functions . 17
6.2 Word Looping Functions . 18
6.3 Real Looping Functions . 19

7 Software and API Design Guidelines 21
7.1 When To Use Currying and When Not To 21
7.2 Foreign Function Interfaces (FFIs) and External Libraries 22

8 Existing Basis Library Functionality To Deprecate and Even-
tually Remove 23

9 The Wall of Shame 24
9.1 An Alternative Collection Traversal Signature 24

9.1.1 An Alternative Mono Collection Traversal Signature . . . 24

10 Mistakes Made In The Current (2004) Standard ML Basis Li-
brary 26

2

Preface

• This document and an implementation is maintained online at:

http://www.HardcoreProcessing.com/pro/anoqsmlbasis/

The current version of this report is a preliminary version. It is intended to
end up as a report, which is to be handed in at the Computer Science Depart-
ment at the University of Copenhagen in Denmark.

Before handing in this report, I am encouraging public feedback, particularly
on the issues in section 1.1.

1 Introduction

This project presents some extensions to the Standard ML Basis Library. It is
the hope that the extensions presented will be adopted as part of the standard.
Alternatively, the extensions are hereby made available to everyone.

The reader is assumed to be familiar with the Standard ML programming
language (see: [SML97]) and the Standard ML Basis Library (see: [BasisOnline]).

1.1 Open Issues for Discussion (Temporary)

This section contains a list of known open issues, which should be clarified upon
completion of this report. Hence, this section is temporary.

1. Should the tabulate{l|r} functions be renamed to unfold{l|r}i and
curried, as in Vesa Karvonen’s Basis Library work [VesaBasis]? I have
already identified currying of tabulate{l|r} as a good thing, and the
main reason for not having done so is the existing design of tabulate.
The sections 4 and 7 are relevant to this question

2. Are the _TRAV signatures a good thing? There are 4 of them and 2 of
them are redundant. See section 5 (in particular section 5.5)

3. Split the signatures COLLECTION etc. into a few more signatures? Con-
cretely, I am considering to split COLLECTION into two parts:

(a) COLLECTION, which consists of everything down to and including the
”dictionary” functions lookup and substitute. If the semantics of
insert is allowed to overwrite an element for certain collection types,
then the insert function could also be kept in this signature

(b) COLLECTION_REDUCIBLE, which includes COLLECTION and adds every-
thing from and including the dictionary functions insert and delete

The same would have to be done for MONO_COLLECTION, of course. One
problem: This gives 4 places to add the IMPERATIVE_ signatures, resulting
in 8 signatures! And subsequently 8 places to add the _TRAV signatures,
resulting in 16 signatures!

Regarding the two proposed names above, the first one could also be called
COLLECTION_NON_REDUCIBLE and the second one just COLLECTION (i.e. as
it is now). See sections 4 (in particular 4.6) and 5

3

4. Is the design of forl and forr good? Right now it takes start index,
number of iterations and step size as parameters. It could take e.g. end
index or end index minus one as parameters instead? Counting iterations
seems simpler though, in particular to extend to e.g. Real, where floating
point comparison can give problems. See section 6

5. The issue relating to platformWin32Windows2000 and
platformWin32WindowsXP, as described in section 10, should probably be
clarified? And it does probably not even belong in this report

4

2 Project Goals

This section presents the goals of the project.

2.1 Problems Solved

The goals related to the problems being solved are the following:

• Add some often-needed functionality to the Standard ML Basis Library

• Make parts of the Standard ML Basis Library more consistent in design

• Simplify the design, if possible

2.2 Practical Goals

In order to increase the likelihood of the extensions being adopted for the stan-
dard, the following goals must also be met:

• Maintain compatibility with existing applications, which use Standard ML
Basis Library 2004

• Give a thorough and concrete suggestion for extensions of the Standard
ML Basis Library

• Make the extensions available as easily and seamlessly as possible

2.3 Additional Motivation

Another goal, which has been part of the motivation for making this project:

• Provide a foundation for a ’better but simpler’ basis library for my CeXL
programming language

5

3 Features of the Supplied Implementation

• Fully backwards compatible with Standard ML Basis Library 2004

• Works off-the-shelf with Standard ML compilers using either the 1997 or
the 2004 Basis Library1

• Uses native compiler implementations of existing Basis Library function-
ality, whereever possible

• Introduces new COLLECTION and IMPERATIVE_COLLECTION signatures and
corresponding MONO versions of these

• The modules List, Vector, Array, Word8Vector, String and CharVector
(which is now the same as String) are all extended to conform to these
signatures

• Adds an Array2D module, which also conforms to the above signatures

• Supplies AnoqUnimplementedCollectionForLazyImplementors, a struc-
ture for easily letting newly written partially complete collection data
structures conform to the above signatures

• Adds higher-order looping functions to the module Int, Word and Real

• When using this implementation with a 1997 Basis Library, the functions
TextIO.inputLine and OS.Path.mk{Absolute|Relative} are altered to
be 2004 compatible and the function Substring.full is added

3.1 Not Implemented in the Supplied Implementation

The following features have not been implemented, even though they probably
should be, if this is to become part of the standard:

• The Slice counterparts of the implemented modules

• The Substring module has not been implemented as StringSlice, even
though that would be the obvious thing to do

• Wide versions of the String and Char related modules

• Int<N>, Word<N> and Real<N> versions of forl and forr, since support
for the <N> modules is compiler dependent

• FIXME: Still not tested: The map{l|r}[i] functions and the Array2D

module

• FIXME: modify[i] and map{l|r}[i] still not implemented in Array2D

1Tested with SML/NJ 110.0.7, MLton 20040227 and MLton 20020923. Which basis library
and compiler you use is configurable in the file AnoqSMLBasis/srcSML/thisdirsources.cm

6

4 The Collection Signatures

4.1 The Collection Signature

FIXME: Most of the included source code should probably be moved to an
appendix

(* This is supposed to match ALL polymorphic collection modules in the

Standard ML Basis library, except for (the hopefully obsolete) Array2.

I.e. Array, Vector, List, Array2D etc.

It should also match most other polymorphic collections. *)

signature COLLECTION =

sig

type index

type dimensions

type ’a t

(* Construction operations *)

val empty : unit -> ’a t

val create : dimensions * ’a -> ’a t

val tabulate : dimensions * (index -> ’a) -> ’a t

(* tabulate{l|r} are new and badly missing in SML Basis. Could be curried? *)

val tabulatel : dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

val tabulater : dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

(* Read operations *)

val sub : ’a t * index -> ’a

(* Dynamic array and dictionary are really good examples of

difference between dimensions and count.

count returns exact number of elements. dimensions returns what

makes sense for data structure dimensions, e.g. the list of all

used keys in a dictionary or the allocated array size of a dynamic

array. The type dimensions must make sense for tabulate etc. *)

val count : ’a t -> int

val dimensions : ’a t -> dimensions

(* Read-only traversal operations *)

val foldl : (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldli : (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldri : (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldsepl : (’b -> ’b) -> (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldsepli : (’b -> ’b) -> (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldsepr : (’b -> ’b) -> (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldsepri : (’b -> ’b) -> (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val exists : (’a -> bool) -> ’a t -> bool

val existsi : (index * ’a -> bool) -> ’a t -> bool

val find : (’a -> bool) -> ’a t -> ’a option

val findi : (index * ’a -> bool) -> ’a t -> ’a option

val app : (’a -> unit) -> ’a t -> unit

val appi : (index * ’a -> unit) -> ’a t -> unit

(* Functional operations *)

val rev : ’a t -> ’a t

val append : ’a t * ’a t -> ’a t

val concat : ’a t list -> ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

val mapi : ((index * ’a) -> ’b) -> ’a t -> ’b t

7

(* map{l|r}[i] are new and badly missing in Standard ML Basis. *)

val mapli : ((index * ’a * ’b) -> (’c * ’b)) -> ’b -> ’a t -> (’c t * ’b)

val mapri : ((index * ’a * ’b) -> (’c * ’b)) -> ’b -> ’a t -> (’c t * ’b)

val mapl : ((’a * ’b) -> (’c * ’b)) -> ’b -> ’a t -> (’c t * ’b)

val mapr : ((’a * ’b) -> (’c * ’b)) -> ’b -> ’a t -> (’c t * ’b)

(* Conversion to and from lists *)

val toList : ’a t -> ’a list

val fromList : ’a list -> ’a t

(* Dictionary functions, which do not alter collection dimensions. *)

val lookup : ’a t -> index -> ’a option

val substitute : index -> (’a -> ’a) -> ’a t -> ’a t

(* The name update is used by the imperative collection signature,

so we call it substitute. Unlike update, this is a functional. *)

(* Dictionary functions. delete diminishes collection dimensions

and insert may enlarge dimensions for some collections.

This may not make sense for all kinds of collections. *)

val insert : index -> ’a -> ’a t -> ’a t

val delete : index -> ’a t -> ’a t

(* More functional operations: These diminish the collection dimensions.

This may not always make sense for all collections, e.g. Array2D. *)

val filter : (’a -> bool) -> ’a t -> ’a t

val filteri : ((index * ’a) -> bool) -> ’a t -> ’a t

val splitAt : (’a t) * index -> (’a t) * (’a t)

val splitl : (’a -> bool) -> ’a t -> (’a t) * (’a t)

val splitli : ((index * ’a) -> bool) -> ’a t -> (’a t) * (’a t)

val splitr : (’a -> bool) -> ’a t -> (’a t) * (’a t)

val splitri : ((index * ’a) -> bool) -> ’a t -> (’a t) * (’a t)

val takel : (’a -> bool) -> ’a t -> ’a t

val takeli : ((index * ’a) -> bool) -> ’a t -> ’a t

val taker : (’a -> bool) -> ’a t -> ’a t

val takeri : ((index * ’a) -> bool) -> ’a t -> ’a t

val dropl : (’a -> bool) -> ’a t -> ’a t

val dropli : ((index * ’a) -> bool) -> ’a t -> ’a t

val dropr : (’a -> bool) -> ’a t -> ’a t

val dropri : ((index * ’a) -> bool) -> ’a t -> ’a t

(* triml/r require that dimensions is "negatable" in some sense,

which should be the case for almost any sensible dimensions type. *)

val triml : dimensions -> ’a t -> ’a t (* comparable to dropl *)

val trimr : dimensions -> ’a t -> ’a t (* comparable to dropr *)

val keepl : dimensions -> ’a t -> ’a t (* comparable to takel *)

val keepr : dimensions -> ’a t -> ’a t (* comparable to taker *)

end

4.2 The Imperative Collection Signature

(* This is supposed to match ALL polymorphic imperative collection

modules in the Standard ML Basis library, except for

(the hopefully obsolete) Array2. E.g. Array, Array2D.

It should also match most other polymorphic imperative collections. *)

signature IMPERATIVE_COLLECTION =

sig

include COLLECTION

(* Destructive traversal updates *)

8

val modify : (’a -> ’a) -> ’a t -> unit

val modifyi : (index * ’a -> ’a) -> ’a t -> unit

(* Other destructive updates *)

val update : ’a t * index * ’a -> unit

end

4.3 The Mono Collection Signature

(* This is supposed to match ALL monomorphic collection modules in the

Standard ML Basis library.

I.e. Word8Vector, String, IntVector etc.

It should also match most other monomorphic collections. *)

signature MONO_COLLECTION =

sig

type index

type dimensions

type t

type elem

(* Construction operations *)

val empty : unit -> t

val create : dimensions * elem -> t

val tabulate : dimensions * (index -> elem) -> t

(* tabulatel/r are new and badly missing in SML Basis. Could be curried? *)

val tabulatel : dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

val tabulater : dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

(* Read operations *)

val sub : t * index -> elem

(* Dynamic array and dictionary are really good examples of

difference between dimensions and count.

count returns exact number of elements. dimensions returns what

makes sense for data structure dimensions, e.g. the list of all

used keys in a dictionary or the allocated array size of a dynamic

array. The type dimensions must make sense for tabulate etc. *)

val count : t -> int

val dimensions : t -> dimensions

(* Read-only traversal operations *)

val foldl : (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldli : (index * elem * ’b -> ’b) -> ’b -> t -> ’b

val foldr : (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldri : (index * elem * ’b -> ’b) -> ’b -> t -> ’b

val foldsepl : (’b -> ’b) -> (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldsepli : (’b -> ’b) -> (index * elem * ’b -> ’b) -> ’b -> t -> ’b

val foldsepr : (’b -> ’b) -> (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldsepri : (’b -> ’b) -> (index * elem * ’b -> ’b) -> ’b -> t -> ’b

val exists : (elem -> bool) -> t -> bool

val existsi : (index * elem -> bool) -> t -> bool

val find : (elem -> bool) -> t -> elem option

val findi : (index * elem -> bool) -> t -> elem option

val app : (elem -> unit) -> t -> unit

val appi : (index * elem -> unit) -> t -> unit

(* Functional operations *)

val rev : t -> t

val append : t * t -> t

val concat : t list -> t

9

val map : (elem -> elem) -> t -> t

val mapi : ((index * elem) -> elem) -> t -> t

(* map{l|r}[i] are new and badly missing in Standard ML Basis. *)

val mapli : ((index * elem * ’b) -> (elem * ’b)) -> ’b -> t -> (t * ’b)

val mapri : ((index * elem * ’b) -> (elem * ’b)) -> ’b -> t -> (t * ’b)

val mapl : ((elem * ’b) -> (elem * ’b)) -> ’b -> t -> (t * ’b)

val mapr : ((elem * ’b) -> (elem * ’b)) -> ’b -> t -> (t * ’b)

(* Conversion to and from lists *)

val toList : t -> elem list

val fromList : elem list -> t

(* Dictionary functions, which do not alter collection dimensions. *)

val lookup : t -> index -> elem option

val substitute : index -> (elem -> elem) -> t -> t

(* The name update is used by the imperative collection signature,

so we call it substitute. Unlike update, this is a functional. *)

(* Dictionary functions. delete diminishes collection dimensions

and insert may enlarge dimensions for some collections.

This may not make sense for all kinds of collections. *)

val insert : index -> elem -> t -> t

val delete : index -> t -> t

(* More functional operations: These diminish the collection dimensions.

This may not always make sense for all collections, e.g. Array2D. *)

val filter : (elem -> bool) -> t -> t

val filteri : ((index * elem) -> bool) -> t -> t

val splitAt : t * index -> t * t

val splitl : (elem -> bool) -> t -> t * t

val splitli : ((index * elem) -> bool) -> t -> t * t

val splitr : (elem -> bool) -> t -> t * t

val splitri : ((index * elem) -> bool) -> t -> t * t

val takel : (elem -> bool) -> t -> t

val takeli : ((index * elem) -> bool) -> t -> t

val taker : (elem -> bool) -> t -> t

val takeri : ((index * elem) -> bool) -> t -> t

val dropl : (elem -> bool) -> t -> t

val dropli : ((index * elem) -> bool) -> t -> t

val dropr : (elem -> bool) -> t -> t

val dropri : ((index * elem) -> bool) -> t -> t

(* triml/r require that dimensions is "negatable" in some sense,

which should be the case for almost any sensible dimensions type. *)

val triml : dimensions -> t -> t (* comparable to dropl *)

val trimr : dimensions -> t -> t (* comparable to dropr *)

val keepl : dimensions -> t -> t (* comparable to takel *)

val keepr : dimensions -> t -> t (* comparable to taker *)

end

4.4 The Imperative Mono Collection Signature

(* This is supposed to match ALL monomorphic imperative collection

modules in the Standard ML Basis library.

E.g. IntArray.

It should also match most other monomorphic imperative collections. *)

signature IMPERATIVE_MONO_COLLECTION =

sig

10

include MONO_COLLECTION

(* Destructive traversal updates *)

val modify : (elem -> elem) -> t -> unit

val modifyi : (index * elem -> elem) -> t -> unit

(* Other destructive updates *)

val update : t * index * elem -> unit

end

11

4.5 Examples of Other Collection Data Structures

Apart from the modules in the Standard ML Basis Library, several other data
structures could be made to conform to these signatures:

• A dictionary data structure with strings as keys. The dimensions type
would be string list and the index type would be string

• The signatures can also support symbol table implementations, like the
one found in section 5 of the book Modern Compiler Implementation in
ML (”The Tiger Book” - FIXME: Make the litterature reference). It can
be done by letting the index type be a hash or an integer (possibly made
opaque by signature mathching) and by having two extra functions like
these (which are not part of the general signatures):

val symbol : string -> index

val name : index -> string

So now, hopefully the signatures also satisfy many compiler writers :-)

4.5.1 Lazy Implementors Writing New Collection Data Structures

If you are writing a new collection data structure and you want it to conform to
one of the COLLECTION signatures, but you don’t want to bother implementing
everything, you can quickly implement it as follows:

structure MyNewCollection

: COLLECTION (* Or one of the other signatures *) =

struct

open AnoqUnimplementedCollectionForLazyImplementors

(* Add the types and functions here,

which you want to bother implementing *)

end

Hence, being lazy is not even an excuse for not using these signatures :-)
FIXME: Some functions can easily be implemented in terms of other func-

tions. E.g.: foldl in terms of foldli, all the take and drop functions in terms
of split{l|r}[i] etc. I am considering to supply functors for doing just that.

4.6 Functions Altering Data Structure Dimensions

4.6.1 Functions Reducing Dimensions

The functions mentioned last in the COLLECTION signatures differ from the other
functions, in that they reduce the dimensions of the data structure. This goes
for the functions which are variants of filter, split, take, drop, trim and
keep. The same also holds for the function delete.

This kind of reduction of dimensions may not make sense for all collection
data structures. Hence, I am considering to split the COLLECTION signatures
into two signatures.

12

Also note that, for some of the above functions (in particular triml and
trimr), their dimensions parameter is the dimensions in some negated sense.
This should make sense for almost any sensible dimensions type, but it is
important to notice.

4.6.2 The Functions insert and delete

As mentioned in the previous section, the function delete can be put into the
category of reducing data structure dimensions.

The function insert also alters data structure dimensions, but this is by
increasing the dimensions. This may not make sense for all data structures
either. However, in the case of insert, a work-around can be made for most data
structures here, by allowing its semantics to differ slightly from data structure to
data structure. In particular, for data structures like lists, vectors and arrays, a
new index can be inserted, while shifting all other indices. For a data structure
like a dictionary, this function is more likely to just overwrite the given index,
without shifting any other indices. For a data structure like Array2D, it is also
not really possible to insert a new index and shift all other indices, so overwriting
would be the behaviour of choice here.

I am not sure of this differing in behaviour is a bad thing, but some data
structures work more naturally with one of these behaviours, while others work
more naturally with the other.

13

5 Traversal Mode Additions for the Collection

Signatures

FIXME: I am not sure if having these signatures is a good idea? There are 4
signatures and 2 of them are even redundant.

5.1 The Collection Traversal Signature

(* This is supposed to match all polymorphic collection modules in the

Standard ML Basis library which support modes of traversal.

E.g. a string dictionary with alphabetical vs. arbitrary traversal. *)

signature COLLECTION_TRAV =

sig

include COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

(* Setting and getting the traversal mode (always a persistent setting) *)

val setTraversal : traversal -> ’a t -> ’a t

val getTraversal : ’a t -> traversal

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> ’a) -> ’a t

val tabulatelTraversal : traversal -> dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

val tabulaterTraversal : traversal -> dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

end

5.2 The Imperative Collection Traversal Signature

(* This is supposed to match all imperative polymorphic collection modules

in the Standard ML Basis library which support modes of traversal.

E.g. Array2D. It should also match other polymorphic collections,

like an Array3D module and a string dictionary with alphabetical

vs. arbitrary traversal. *)

signature IMPERATIVE_COLLECTION_TRAV =

sig

include IMPERATIVE_COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

(* Setting and getting the traversal mode (always a persistent setting) *)

val setTraversal : traversal -> ’a t -> ’a t

val getTraversal : ’a t -> traversal

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> ’a) -> ’a t

val tabulatelTraversal : traversal -> dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

val tabulaterTraversal : traversal -> dimensions * (index * ’b -> ’a * ’b) * ’b -> (’a t) * ’b

end

14

5.3 The Mono Collection Traversal Signature

(* This is supposed to match all monomorphic collection modules in the

Standard ML Basis library which support modes of traversal. *)

signature MONO_COLLECTION_TRAV =

sig

include MONO_COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

(* Setting and getting the traversal mode (always a persistent setting) *)

val setTraversal : traversal -> t -> t

val getTraversal : t -> traversal

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> elem) -> t

val tabulatelTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

val tabulaterTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

end

5.4 The Imperative Mono Collection Traversal Signature

(* This is supposed to match all monomorphic collection modules in the

Standard ML Basis library which support modes of traversal. *)

signature IMPERATIVE_MONO_COLLECTION_TRAV =

sig

include IMPERATIVE_MONO_COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

(* Setting and getting the traversal mode (always a persistent setting) *)

val setTraversal : traversal -> t -> t

val getTraversal : t -> traversal

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> elem) -> t

val tabulatelTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

val tabulaterTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

end

15

5.5 Some Examples of Modules with Traversal Modes

The following are some examples of modules, which could have traversal modes:

• A dictionary data structure with strings as keys could use this traversal
datatype:

datatype traversal =

Arbitrary

| Alphabetical

• An Array3D module could use this traversal datatype:

datatype traversal =

XYZ

| YXZ

| XZY

| ZXY

| YZX

| ZYX

• A suggestion for traversals of a binary tree data structure:

datatype traversal =

Inorder

| Preoder

| Postorder

Maybe only Inorder and Preorder are needed, since Postorder would be
like using {fold|map|tabulate}r[i] instead of {fold|map|tabulate}l[i]
for the traversal

I hope that this is enough to convince the reader that the traversal modes
are useful for more than just Array2D.

5.6 A More Drastic Idea

If one wouldn’t mind introducing incompatibilities with the current SML Ba-
sis, one could even replace the {fold|map|tabulate}{l|r}[i] functions with
only versions {fold|map|tabulate}[i] (i.e. without the {l|r} part), and sup-
porting forward and backward traversal modes for everyting by letting all the
functions have a traversal parameter.

I would not recommend such a drastic change to the Standard ML Basis
Library though. It might also give a little run-time overhead for dispatching on
the traversal parameter, for modules not requiring more traversal modes than
left vs. right, at least if the Basis Library interface is made available through
an FFI interface, but see section 7.2 for my discouragement from doing that in
the first place.

16

6 Number Looping Functions

It is my experience that one often writes a snippet of ML code, which starts by
using List.tabulate to make a list of integers, which is subsequently used for
List.foldl, to fold a function over the indices. This can be quite inefficient,
if the compiler is unable to optimize away the intermediate list. On these
occasions, the forl and forr functions presented here would undoubtedly be
better.

6.1 Int Looping Functions

(* An integer module with forl and forr functions. *)

structure Int =

struct

open Int

(* The forl and forr functions could be curried, but one

may be likely to forget the last init parameter,

if using it for a side-effecting loop! *)

fun forl (starti, iters, stepi, f, init) =

if iters >= 0 then

let

val endi = starti + stepi * iters

(* The inner loop, which should be efficient.

Only one live variable for counting: i. *)

fun loopUp (i, acc) =

if i < endi then

loopUp (i + stepi, f (i, acc))

else

acc

(* The inner loop for when stepi < 0 *)

fun loopDown (i, acc) =

if i > endi then

loopDown (i + stepi, f (i, acc))

else

acc

in

if stepi > 0 then

loopUp (starti, init)

else if stepi < 0 then

loopDown (starti, init)

else

raise Subscript

end

else

raise Subscript

fun forr (starti, iters, stepi, f, init) =

if iters >= 0 then

let

(* In forr the loop just counts backwards,

starting at the last iteration. Notice: iters - 1 *)

val endi = starti + stepi * (iters - 1)

(* The inner loop, which should be efficient.

Only one live variable for counting: i. *)

fun loopUp (i, acc) =

(* Notice: i >= starti *)

17

if i >= starti then

loopUp (i - stepi, f (i, acc))

else

acc

(* The inner loop for when stepi < 0 *)

fun loopDown (i, acc) =

(* Notice: i <= starti *)

if i <= starti then

loopDown (i - stepi, f (i, acc))

else

acc

in

if stepi > 0 then

loopUp (endi, init)

else if stepi < 0 then

loopDown (endi, init)

else

raise Subscript

end

else

raise Subscript

end

6.2 Word Looping Functions

(* A word module with forl and forr functions. *)

structure Word =

struct

open Word

(* The forl and forr functions could be curried, but one

may be likely to forget the last init parameter,

if using it for a side-effecting loop! *)

fun forl (starti, iters, stepi, f, init) =

(* Negative Word values do not exist, so stepi is never negative *)

if stepi > 0w0 andalso iters >= 0w0 then

let

val endi = starti + stepi * iters

(* The inner loop, which should be efficient.

Only one live variable for counting: i. *)

fun loop (i, acc) =

if i < endi then

loop (i + stepi, f (i, acc))

else

acc

in

loop (starti, init)

end

else

raise Subscript

fun forr (starti, iters, stepi, f, init) =

(* Negative Word values do not exist, so stepi is never negative *)

if stepi > 0w0 then

if iters > 0w0 then

let

(* In forr the loop just counts backwards,

starting at the last iteration. Notice: iters - 1 *)

val endi = starti + stepi * (iters - 0w1)

18

(* The inner loop, which should be efficient.

Only one live variable for counting: i. *)

fun loop (i, acc) =

(* (print (String.concat ["loop ", Word.toString i]); *)

if i > starti then

loop (i - stepi, f (i, acc))

else if i = starti then

(* We have to have this case, otherwise i wraps around *)

f (i, acc)

else

acc

in

loop (endi, init)

end

else if iters = 0w0 then

(* We have to have this case, otherwise iters - 0w1 wraps around. *)

init

else

raise Subscript

else

raise Subscript

end

6.3 Real Looping Functions

(* A real module with forl and forr functions. *)

structure Real =

struct

open Real

(* The forl and forr functions could be curried, but one

may be likely to forget the last init parameter,

if using it for a side-effecting loop! *)

fun forl (starti : real, iters : int, stepi : real, f, init) =

if Int.>=(iters, 0) then

let

(* The inner loop, which should be efficient.

We need two live variables just for counting though.

iters controls the number of iterations, without floating

point inaccurracy problems, and i is the index. *)

fun loop (i : real, iters : int, acc) =

if Int.>(iters, 0) then

loop (i + stepi, Int.-(iters, 1), f (i, acc))

else

acc

in

if stepi > 0.0 orelse stepi < 0.0 then

loop (starti, iters, init)

else

raise Subscript

end

else

raise Subscript

(* forr is not tail-recursive and thus uses stack space!

This is necessary to guarantee that the same index values are

traversed, in the presence of floating point inaccuracy problems. *)

fun forr (starti : real, iters : int, stepi : real, f, init) =

if Int.>=(iters, 0) then

let

(* The inner loop, which should be efficient.

We need two live variables just for counting though

19

and it is not tail-recursive.

iters controls the number of iterations, without floating

point inaccurracy problems, and i is the index. *)

fun loop (i : real, iters : int) =

if Int.>(iters, 0) then

f(i, loop (i + stepi, Int.-(iters, 1)))

else

init

in

if stepi > 0.0 orelse stepi < 0.0 then

loop (starti, iters)

else

raise Subscript

end

else

raise Subscript

end

20

7 Software and API Design Guidelines

This section discusses some API design principles. The main focus is for Stan-
dard ML and its Basis Library, but some principles can be taken as being more
general than that, which makes this section valuable to programmers in general.

FIXME: Structure this section into a discussion and the resulting guidelines
/ principles.

7.1 When To Use Currying and When Not To

There are pros and cons to using curried function parameters. Some important
arguments are listed here:

Pros: Every programmer of a functional programming language know that
curried function parameters are very convenient on many occasions.

Cons: There are many potential downsides to consider, when a choice between
currying or not is to be made:

1. It is possible to forget one or more of the last arguments for a curried
function call (at a call-site for the function), without the type-checker
complaining.

If the nature of a function is such that it returns a useful value that one
is typically interested in using - e.g. the result of a lookup function in a
data structure, then the type-system of ML will complain if an argument
is forgotten.

However, if a function does not return a useful value, or if it returns a value
that one might not always want to use, then it is quite easy to forget an
argument. If the purpose of such a function is to give a side-effect and
it just returns the value of type unit, then this is an obvious place where
using record parameters or tuple parameters may be in favour of currying.

2. The type errors that one has to deal with for curried functions are usually
a little more complex than non-curried counterparts

3. It is not always possible to determine an ordering of the curried parame-
ters, such that this particular ordering is typically the most useful.

4. Currying may have a computational price, especially if it is exported
though a foreign function interface (FFI) or similar.

Which of the above downsides are important as design parameters?

• As discussed in section 7.2, I would strongly discourage wrapping the
Standard ML Basis library into an FFI. Hence the computational price
of curring (”con 4” in the above list) should not be an important design
parameter for the interfaces of the basic data structures. However, they
might be relevant for modules accessing the operating system.

21

All in all, I think that the SML Basis Library has made quite sensible choices
of when to use currying and when not to. There are a few places, where one
could consider using currying, mostly the function sub I guess, but I would call
that a small flaw :) One could also consider using records more frequently than
tuples, but at least the tuples are very small and simple in the SML Basis, and
records are not even better than tuples for all uses either.

7.2 Foreign Function Interfaces (FFIs) and External Li-
braries

Something about FFIs, when to use external libraries and when not to:

• Certain things make very good sense to put into a ”library” (meaning here
an external library accessed via an FFI). This is mostly things which both
have a substantial size and a well-defined interface, preferably with small
amounts of data transfer. This also goes for interfaces to external hard-
ware and the likes. Examples: RenderMan interface, OpenGL interface,
graphical user interface toolkits etc.

Certain parts of the SML Basis Library might make sense to have in an
external library. E.g. the modules which access the operating system.
But then again, the lower-level POSIX interface might be even better.

• Certain things should never be put into (external) libraries. In particular
functionality which is simple or has large amounts of data transfer through
the interface, compared to how much computation is done on those data.

Canonical examples: The basic data structures of the Standard ML Basis
library(!) and other small utility functions. The best is of course for the
compiler to be able to optimize (e.g. inline, specialize, monomorphize etc.)
on such things.

To take the argument of never passing through an FFI further, if the Basis
Library has bugs, an application using the Basis might have corresponding
work-around bugs, so just upgrading a .dll or .so with a new basis might
actually crash applications using it - so not even from a maintainance
point-of-view is it a good thing to e.g. isolate it in a .dll or .so file.

A related real-world example: Typically, applications for Linux link dy-
namically with the libc library. Binary incompatibilities of libc can be
one of the big headaches of installing Linux applications today! The SML
Basis Library should not become a similar obstacle for ML programs. In
fact, an ML-compiler producing Linux binaries without using libc could
give some interesting competition to C-programs on Linux :-)

22

8 Existing Basis Library Functionality To Dep-

recate and Eventually Remove

The following parts of the Standard ML Basis Library are what I would recom-
mend to deprecate, and eventually, in a few years or so, remove:

• Many of the MONO_ modules could be deprecated. In particular IntArray,
Int<N>Array, IntVector, Int<N>Vector, RealArray, Real<N>Array, RealVector,
Real<N>Vector, WordArray, Word<N>Array (except those mentioned be-
low), WordVector, Word<N>Vector (except those mentioned below) and
the Slice counterparts of all these.

Reasons: A good compiler should be able to infer as efficient compilation
of these as for their polymorphic counterparts. Programmers should also
be discouraged from even considering to use these modules, since they
are not type-wise compatiple with their polymorphic counterparts, which
probably results in needless conversions at runtime when using them.

However, the modules CharArray, CharVector, String, StringSlice,
Substring, Word8Array, Word8Vector, BoolArray, BoolVector and their
corresponding Slice modules should probably be kept. One could also
consider keeping Word32Array, Word32Vector, Word64Array, Word64Vector
and their Slice counterparts, since these conform to natural computer
memory layouts

• All Array2 variants, in favor of Array2D.

Reasons: Consistency of signatures

23

9 The Wall of Shame

9.1 An Alternative Collection Traversal Signature

An alternative way of defining the traversal functionality would be to add new
functions with an extra curried parameter. This requires addition of many new
redundant functions. Putting that many redundant functions in a general sig-
nature, just to achieve compatibility with a single module, Array2, is something
which I consider to be a bad idea.

(* This is supposed to match all polymorphic collection modules in the

Standard ML Basis library which support modes of traversal.

E.g. Array2D. It should also match other polymorphic collections,

like an Array3D module and a string dictionary with alphabetical

vs. arbitrary traversal. *)

signature COLLECTION_TRAV_OBSOLETE =

sig

include COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> ’a) -> ’a t

(* tabulate{l|r}Traversal could be defined too *)

(* Read-only traversal operations *)

val appTraversal : traversal -> (’a -> unit) -> ’a t -> unit

val appiTraversal : traversal -> (index * ’a -> unit) -> ’a t -> unit

val foldlTraversal : traversal -> (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldliTraversal : traversal -> (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldrTraversal : traversal -> (’a * ’b -> ’b) -> ’b -> ’a t -> ’b

val foldriTraversal : traversal -> (index * ’a * ’b -> ’b) -> ’b -> ’a t -> ’b

(* Functional operations *)

val mapTraversal : traversal -> (’a -> ’b) -> ’a t -> ’b t

val mapiTraversal : traversal -> ((index * ’a) -> ’b) -> ’a t -> ’b t

(* More functions, like map{l|r}[i]Traversal, could be defined too *)

end

9.1.1 An Alternative Mono Collection Traversal Signature

The above signature alone would not be the complete story of how many re-
dundant signature functions would have to be added. A mono version of the
signature would also be needed, which would look as follows.

signature MONO_COLLECTION_TRAV_OBSOLETE =

sig

include MONO_COLLECTION

type traversal

(* Supposed to be the default and thus most efficient

traversal order for the collection data structure. *)

val defaultTraversal : traversal

24

(* Construction operations *)

val tabulateTraversal : traversal -> dimensions * (index -> elem) -> t

val tabulatelTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

val tabulaterTraversal : traversal -> dimensions * (index * ’b -> elem * ’b) * ’b -> t * ’b

(* Read-only traversal operations *)

val appTraversal : traversal -> (elem -> unit) -> t -> unit

val appiTraversal : traversal -> (index * elem -> unit) -> t -> unit

val foldlTraversal : traversal -> (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldliTraversal : traversal -> (index * elem * ’b -> ’b) -> ’b -> t -> ’b

val foldrTraversal : traversal -> (elem * ’b -> ’b) -> ’b -> t -> ’b

val foldriTraversal : traversal -> (index * elem * ’b -> ’b) -> ’b -> t -> ’b

(* Functional operations *)

val mapTraversal : traversal -> (elem -> elem) -> t -> t

val mapiTraversal : traversal -> ((index * elem) -> elem) -> t -> t

end

25

10 Mistakes Made In The Current (2004) Stan-
dard ML Basis Library

This section points out a few mistakes, which are currently present in the Stan-
dard ML Basis Library. (FIXME: This does probably not belong in the re-
port...?)

• In the history log for Standard ML Basis, I found an entry where
platformWin32Windows2000and platformWin32WindowsXPhave been re-
moved and an accompanying claim that platformWin32WindowsNT is iden-
tical to platformWin32Windows2000.

Windows NT and Windows 2000 are not entirely identical, not even from
a programmer’s point of view. Proof:

Try running the following Standard ML program on NT and 2000, respec-
tively:

val str = TextIO.openOut "testLinefeeds.txt"

val _ = TextIO.output (str, "Hello\013\010\013\010World")

val _ = TextIO.close str

The output files are not identical on the OSes.

Hence, platformWin32Windows2000 and platformWin32WindowsXP should
probably be added back in? Maybe along with some way to determine the
”type” of operating system? Or perhaps just an ordering comparison on
platform, to be able to ask ”is this ’at least’ Windows NT”?

References

[SML97] Robin Milner, Mads Tofte, Robert Harper, David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[BasisOnline] John Reppy et. al. The Standard ML Basis Library.
http://www.standardml.org/Basis/

[VesaBasis] Vesa Karvonen. An Extended Basis Library.
svn://mlton.org/mltonlib/trunk/com/ssh/extended-basis/unstable/

[SMLNJ] David MacQueen et. al. Standard ML of New Jersey.
http://www.smlnj.org/

[MLton] Stephen Weeks et. al. MLton.
http://www.mlton.org/

26

